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Abstract. Detecting and adapting to novel situations is a major chal-
lenge for AI systems that operate in open-world environments. One rea-
son for this challenge is due to the diverse range of forms that novelties
can take. To accurately evaluate an AI system’s ability to detect and
adapt to novelties, it is crucial to investigate and formalize the diffi-
culty of different novelty types. In this paper, we propose a method for
quantifying the difficulty of novelty detection and novelty adaptation in
open-world physical environments, considering factors such as the ap-
pearance and location of objects, as well as the actions required by the
agent. We implement several difficulty measures using a combination of
qualitative spatial relations, learning algorithms, and statistical distance
measures. To demonstrate an application of our approach, we apply our
difficulty measures to novelties in the popular physics simulation game
Angry Birds. We invite researchers to incorporate the proposed novelty
difficulty measures when evaluating AI systems to gain a better under-
standing of their limitations and identify areas for future improvement.
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1 Introduction

Autonomous AI systems such as self-driving cars, space probes, and surveillance
drones have become increasingly popular and common in recent years. These AI
systems require the ability to detect and adapt to novel situations in a timely
and efficient manner to avoid undesirable consequences. For instance, if a self-
driving car maintains its speed in a storm that was not experienced during
model training, it could endanger many lives. Open-world learning (OWL) is an
emerging field of study that aims to solve the challenge of detecting and adapting
to novel situations [14]. To progress in OWL research, it is essential to have
appropriate evaluation protocols to capture the performance of agents under the
two tasks: novelty detection and adaptation [18,9]. This paper contributes to
the OWL evaluation by creating difficulty measures to independently evaluate
agents’ performance from the inherent difficulty of novelties.

We encounter a near-infinite form of novelties in the real world [14,1,6]. For
example, consider an autonomous car designed for urban driving in a busy city.
The model which controls the vehicle has reliable expertise for navigating in this
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setting, but suppose it enters a new area with different traffic patterns. Here, it
may encounter new types of road signs, unfamiliar pedestrians that can cross its
path, and aggressive drivers that may cut it off. The vehicle may enter a stormy
area where visibility is low and where sensor readings are distorted or where
strong winds threaten to push it off course. As seen from this example, there is a
large range of novelties and some of them may be easy to detect and adapt and
some of them could be hard or nearly impossible. If we are to evaluate the novelty
detection and novelty adaptation ability of an agent, it would be uninformative
to comment on the performance by considering all the novelties as a whole [19].
Using a measure of difficulty in the evaluation enables evaluators to understand
the range of situations an agent may fail and reliably make conclusions.

In this paper, we identify different forms of novelties by considering two states
where an agent can detect/adapt to novelty: observational state, action state.
The observational state considers the situations that can be visually perceived
while the action state considers the actions an agent has to take. We formalize
practical methods to compute difficulty under the two states with the use of
learning algorithms and statistical distance measures. We utilize existing learn-
ing algorithms and we propose an algorithm developed using qualitative spatial
relations (QSRs). For statistical distance measures, we use graph edit distance
(GED), distance measures developed using solution paths, and measures based
on the probability density function (PDF). In the supplementary materials, we
demonstrate that the difficulty measures we formulated can be easily applied in
practice by applying them to a recently developed testbed NovPhy [9] (Angry
Birds with novelty), which injects novelties into a physical environment.

2 Background and Related Work

In this section, we first provide definitions for the terms that we will be using
throughout the paper. Next, we review the literature on a number of topics
required to understand our novelty difficulty measures.

– novelty : a situation that an agent has not encountered during model training.
It could be a new object that an agent has not seen before or a phenomenon
that an agent has not experienced (eg: storms, floods).

– pre-novelty : a situation without novelty (i.e., a situation that an agent has
seen during model training).

– novel object : An object that has one or more novel properties. It could be
an object that an agent has seen before but with a different color, or mass,
or the object may do an action that it did not do during pre-novelty.

– non-novel object : An object without any novel property.
– object class: A group of objects with similar properties. (eg: In Fig. 1b, there

are multiple brown circular objects. They belong to class wood-circle).
– novelty detection: detecting that a novelty is present in a task.
– novelty adaptation: solving a task in the presence of a novelty.
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(a) (b) (c)

Fig. 1: Example tasks from NovPhy testbed. In each subfigure, the top figure is
the pre-novelty task and the bottom figure is the corresponding task with the
novelty. The arrows show the trajectories of the objects when the solution is
executed. It can be seen that in (a), we do not need to modify the shooting
angle (action) as the novelty only changes the colour of an object, in contrast,
in (b) and (c) we need to change the action due to the nature of the novelty. See
[9] for descriptions of the novelties.

2.1 Novelty Research

In recognition of the critical need for AI systems that can effectively detect and
adapt to novel situations, DARPA has launched a program known as the Science
of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON) The
SAIL-ON program defines novelty in the realm of AI as situations that violate
implicit or explicit assumptions about the agents, the environment, or their
interactions [20]. [1] also look into a range of novelties and formalize a theory of
novelty for open-world environments. The authors identified three distinct states
where novelties can occur, observational state, world state, and agent state. Our
work on defining the difficulty of detection and adaptation follows from this
research and we consider the observational state where a novelty can be visually
perceived. However, we do not consider the world state (the state where all the
information is available. eg: physical parameter values in a physical domain) as
our work focuses on detection and adaptation difficulty and an agent does not
receive all the information from the world state. We also do not consider the
agent state (a state specific to an agent based on the agent architecture) as we
intend to develop difficulty measures that do not depend on individual agent
properties. Instead, we consider action state that takes into account the actions
an agent needs to take to solve a task. In Fig. 1, we show example novelties
where an agent needs to modify the action to solve the task and where agents
do not need to modify the action.

2.2 Difficulty Prediction

Difficulty assessment is a popular research area in a number of research fields
ranging from neuroscience to AI. In neuroscience, researchers study the difficulty
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of decision-making processes in humans [7,10]. Similarly, in AI, researchers study
the difficulty of tasks for AI systems [11,16]. Our work on developing difficulty
measures for novelty detection and adaptation focuses on AI agents.

Considering the OWL-related difficulty measures already available in the lit-
erature, [19] propose a difficulty of detection only by considering a single class of
novelties. The authors only consider novelties that cannot be visually perceived
but are different in underlying physical parameters. Considering the adaptation
difficulty, [17] propose a method to quantify the difficulty of adapting to novelty
using the solution paths the agents take. The method requires a reinforcement
learning agent to solve multiple tasks, which is costly as it requires multiple trial
and error runs to reach the optimal solution. Inspired by this approach, we also
propose a method that takes solution paths into consideration without running
an agent. Another novelty adaptation difficulty measure predicts the difficulty
using GED [21] for an agent’s mental model for the board game Monopoly [13].
Similarly, we make use of GED and we propose an agent-independent difficulty
measure for physical environments. [6], analyze domain complexity and intro-
duce factors such as single entity and multiple entities that contribute towards
difficulty in OWL tasks. Our work makes use of these factors when defining
difficulty measures.

2.3 Learning Algorithms

Novelty detection, which is sometimes referred to as anomaly detection, outlier
detection, or one-class classification, [2] is a critical research area in machine
learning and data mining. The goal of novelty detection is to identify patterns
or behaviors in data that are significantly different from the expected or nor-
mal behavior. Over the years, several comprehensive surveys and reviews of
novelty detection techniques have been conducted, focusing on different aspects
and techniques [12]. In [2], authors reviewed novelty detection techniques and
categorized them into six domains: classification, clustering, nearest neighbors,
statistical methods, information theory, and spectral theory. Our work on pre-
dicting the difficulty of novelty detection, uses classification-based approaches
and clustering-based approaches. We identify different factors that contribute
towards the detection such as color and shape and we have developed multiple
classification models to predict the probability of an object belonging to differ-
ent object classes. Finally, we combine the models in the form of a weighted
ensemble to predict the difficulty. The clustering-based model is an algorithm
we propose to predict the detection difficulty using QSRs.

2.4 Qualitative Spatial Relations (QSRs)

Due to a large number of applications of QSRs [3,5,15], dozens of formalisms
of calculi have been proposed for describing various aspects of space [5,4,3]. In
our work, we utilize three commonly used calculi to represent topology, direc-
tion, and distance. We use Region Connection Calculus (RCC)-8 (Fig. 2a) to
describe topological relations: dc (disconnected), ec (externally connected), po
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(a) RCC-8 topology relations
(b) CSDC direction
relations

(c) QDC distance re-
lations

Fig. 2: QSRs. The connections represent conceptual neighbors. Distance between
two neighbors is taken as 1.

(partially overlapping), eq (equal), tpp (tangential proper part), tppi (tangen-
tial proper part inverse), ntpp (non-tangential proper part), and ntppi (non-
tangential proper part inverse) [4,3]. To describe directions, we use Cone-Shaped
Direction Calculus (CSDC) (Fig. 2b). The relations of the CSDC are based on
the eight disjoint sectors of the space divided by the lines going through the
reference point [3]. The eight relations are n (north), ne (northeast), e (east), se
(southeast), s (south), sw (southwest), w (west), and nw (northwest). Addition-
ally, we use Qualitative Distance Calculus (QDC) (Fig. 2c) to describe distance
between two objects. We have used five absolute distance calculi: vc (very close),
cl (close), cm (commensurate), fr (far), and vf (very far) [3].

2.5 Experimental Domain

Our experimental domain NovPhy [9] is a testbed designed to evaluate physical
reasoning in the presence of novelties. The testbed is based on the popular physics
simulation game Angry Birds. Fig. 1 shows example tasks with and without
novelty. We explain the experimental domain in detail in the Supplementary A
along with the experimental results.

3 Novelty Difficulty Formulation

In this section, we explain the dimensions of novelty we need to consider to
formulate our difficulty measures and the practical implementation of it.

3.1 Dimensions of Novelty

Considering the dimensions where novelty can be perceived by an agent, we
consider two states: observational state and action state. The two states are
motivated by the research [1] on the unifying theory of novelty.
1. Observational state: The state where an agent can observe the environment
2. Action state: The state where the agent needs to take an action

We consider these two states, as in a physical domain, the novelties can
either be detected due to the physical appearance (novelties that can be per-
ceived visually: in the observational state) or could be detected/adapted due to
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Fig. 3: The novelty dimensions considered in the study

a change in action compared to the actions encountered before (novelties that
can be perceived after taking an action: in the action state). As [6] state, a nov-
elty in an environment can be in a single entity or it could be as a relationship
between multiple entities. Taking the entities into consideration, in the obser-
vational state, we identify dimensions that can be observed in a single entity
and dimensions that can be observed as a relationship between multiple enti-
ties. Therefore, we extend the dimensions to color, shape, and rotation for single
entity, and for multiple entities we consider the relative location of objects in
terms of QSRs. Considering the action state, the dimensions we consider are
based on situations that enable an agent to detect/adapt to novelty if an agent’s
expected action changes from the known action in a situation without novelty.
We consider 1) action target, to check if the target object changes (for example,
in Fig. 1b, the target object has changed when the direction of the air turbu-
lence has changed), 2) action initiation to check if the solution action changes
(for example, in Fig. 1c, the shooting angle has changed compared to the angle
used in the non-novelty), and 3) action time to identify if the time allocated to
take actions change (for example, in novelty you may need to shoot faster before
a certain event happens). See Fig. 3 for the novelty dimensions we consider.

3.2 Observational State

In this section, we discuss the formulation of difficulty under each dimension
belonging to the observational state. We discuss the formulation of color and
shape together as the underlying formulation is the same except for the input
data structure. For the rotation based difficulty measure, we make use of the
predictions made from shape and color models. For the location, we use QSRs to
develop our difficulty prediction algorithm. All the observational state difficulty
measures are aimed to predict the difficulty of novelty detection. The measures
are not used to predict the adaptation difficulty as agents cannot take any action
in the observational state. Therefore, we predict the difficulty of novelty detection
for agents if the agents are detecting novelty using a single dimension.

Color and Shape Based Difficulty Given a physical domain, there are non-
novel objects that an agent can be trained on. Therefore, with the use of classifi-
cation algorithms, we can predict the probability that a novel object belongs to
a non-novel object class. The color-based algorithm predicts the probability that
a novel object can be considered an object that was seen before based on the
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Fig. 4: The formulation of color and shape based difficulty

observed color of an object. Similarly, in the shape-based algorithm, we predict
the probability that a novel object can be considered an existing object based
on the shape of the object.

We illustrate the process of computing the difficulty based on color or shape
in Fig. 4. There are two stages when computing difficulty for color and shape.
In the offline stage, we train multiple learning models to classify objects and
we evaluate the models on a pre-defined test set that comprises objects seen
in pre-novelty. We define O as a list of all object classes in pre-novelty (O =
{o1, o2, ..., oj , ..., on}). Next, we filter out the models that have an acceptable
performance. If the model Mi has a performance higher than an acceptable
threshold γ for all object classes, we select the model to make predictions in the
online stage (Perfi,j > γ ∀oj ∈ O). Therefore, the models that perform well will
be used in the online stage in the form of a weighted ensemble to predict the
probability (pr) that a novel object belongs to an existing object class. Following
is the formulation to establish the difficulty value for novel object k, denoted o∗k.

In model Mi: Pi,k = {p1,k, p2,k, ..., pj,k, ..., pn,k}, where, pj,k = pr(o∗k = oj).
Therefore, we define pmax

i,k = max(Pi,k) and ôi,k = argmaxoj (Pi,k). i.e., pmax
i,k

is the maximum probability that the model Mi allocates o∗k to an existing ob-
ject class and ôi,k is the predicted object class. The weight of the prediction is
calculated as wi,k = (αn − n′

i,k)/αn if αn > n′
i,k, or else wi,k is set to 0. Here,

n′
i,k =

(∑n
j=1

{
1 if(pmax

i,k − pj,k) ≤ β

0 otherwise

)
−1. α and β are hyper-parameters that should

be selected according to the domain based on the prediction flexibility we allow.
The final difficulty of detecting o∗k novel object using color/shape:

Difficulty
color/shape
k =

∑m
i=1 p

max
i,k wi,k∑m

i=1 wi,k
(1)

The difficulty value is between 0-1, 1 indicates the highest difficulty. The idea is
that if a weighted ensemble predicts that a novel object belongs to an existing
class based on its color/ shape, then it is difficult to visually detect. In contrast,
the difficulty will be low if the models have lower probabilities or if there are
multiple objects with probabilities close to maximum probability.
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Rotation Based Difficulty Rotation difficulty measures if the agents can
detect a novelty based on the rotation of the novel object (eg: in NovPhy, it could
be that the pig is rotated upside down in novelty which is not usually rotated in
pre-novelty). Similar to the previous section, the rotation difficulty also comprises
two stages (See Fig.2 in Supplementary B). In the offline stage, we collect rotation
data from non-novel object classes and estimate the distribution for each object
class using kernel density estimation (KDE). In the online stage, we use the
predicted object class from color and shape algorithms ôk and the novel objects’
observed rotation (rot∗k). The predicted object from color and shape algorithms
can be selected based on a voting technique of choice (eg: hard voting, soft voting,
or weighted voting) [22]. Next, the KDE of the predicted object is selected, and
the area under the PDF for the rot∗k ± rotϵ can be interpreted as the difficulty
of detection using rotation. rotϵ is a predefined constant (a small rotation shift)
that helps to get the area under the probability density function (PDFr(ôk)).
The difficulty based on rotation can be expressed as follows.

Difficultyrotation
k =

∫ rot∗k+rotϵ

rot∗
k
−rotϵ

PDFr(ôk) dr (2)

The underlying idea is that if the rotation of the novel object is commonly
observed in pre-novelty, it becomes challenging to detect the novelty solely based
on rotation. The rotation difficulty ranges between 0-1, 1 is the highest difficulty.

Location Based Difficulty The location-based difficulty considers the relative
location between pairs of objects. For example, in Fig. 1c, the direction relation-
ship between the bird and the pig has changed in novelty. The relative location
between objects is captured through the change in QSRs between object pairs
in novel tasks compared to the non-novel tasks. In the offline stage, we collect
object pair relationships and develop clusters for each object pair based on a con-
ceptual distance measure. In the online stage, we take the observed object pair
relationship and determine the difficulty based on the distance to the clusters
developed in the offline stage.

Formulation: To explain the difficulty measure, we first define a state as
sijk a tuple consisting of the classes of an object pair and its observed QSRs
(< oi, oj >,Rij

k ) where Rij
k = [rij1k, r

ij
2k, r

ij
3k]. The set of all available states for the

pair of object classes oi and oj is Sij = {sij1 , s
ij
2 , ...}. The relations r..1. ∈ RCC-8,

r..2. ∈ CSDC, and r..3. ∈ QDC. Considering two states for the oi and oj object
pair as sijk and sijk′ , sijk = (< oi, oj >,Rij

k ) and sijk′ = (< oi, oj >,Rij
k′), we can

find the distance between two states as dsijk ,sij
k′

=
∑3

q=1 |r
ij
qk − rijqk′ |. |rijqk − rijqk′ |

is the minimum absolute distance between two relations that can be calculated
using shortest path algorithms applied to the QSR graphs in Fig. 2.

Clustering: When constructing the clusters, we develop clusters for each ob-
ject class pair. The cluster nodes are the QSRs (eg: Rij

k ) and two nodes Rij
k and

Rij
k′ will be connected only if dsijk ,sij

k′
≤ d∗ (d∗ is a threshold distance to define

according to the domain to determine if the nodes connect). If dsijk ,sij
k′

= 0, the

node size increases. The final size of the node Rij
k is, size(Rij

k ) =
|{k′|d

s
ij
k

,s
ij
k′

=0}|

|Sij |
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Fig. 5: The formulation of location based difficulty
(i.e., the proportion of states that has the same QSR as the state sijk ). We rep-
resent the set of clusters developed for Sij as Cij (Cij = {cij1 , c

ij
2 , ...}) where

cijl = {Rij
l1, R

ij
l2, ...}.

Difficulty Computation: The difficulty computation will be done for each
object pair in the novel task. Given an object pair (novel/ non-novel) with their
observed QSRs and the object classes, the clusters developed in the offline stage
for the corresponding object class pair will be extracted. Assume that the state
we take from the novel task is sijm∗. Therefore, the set of clusters developed for Sij

will be extracted (i.e., Cij). The cluster distance between Cij and Rij
m∗ is taken to

be the minimum distance between the observed relations and relations available
in the cluster set. That is cdijm∗ = min{dsijm∗,s

ij
k
∀sijk ∈ Sij}. We define the location

difficulty for an observed state in equation 3 and illustrate the process in Fig. 5.
The D(r1), D(r2), and D(r3) in the equation represent the diameter of the RCC-
8, CSDC, and QDC graphs (Fig. 2) respectively. The diameter of a graph is the
length of the shortest path between the most distanced nodes.

Difficulty
location

s
ij
m∗

=

1 +


size(Rij

m∗) ifcdij
m∗ = 0

0 ifcdij
m∗ ≤ d∗

−(cdij
m∗)/(

∑3
q=1 D(rq) otherwise

2
(3)

The rationale of this measure is that if the QSR of the pair of objects being
examined belongs to a cluster node (cdijm∗ = 0), it indicates that the QSR has
been observed in pre-novelty. Thus, we quantify the difficulty based on the node
size of the QSR (high difficulty). If cdijm∗ < d∗, QSR can be connected to an
existing cluster and the difficulty is 0.5. If it cannot be connected, then we quan-
tify using the distance away as a proportion of the maximum allowed distance.
Similar to other measures, difficulty is between 0-1, 1 is the highest difficulty.

Observational state difficulty summary All the difficulty measures devel-
oped for the observational state are for detection and they are formulated for
a single object (a single object pair for location). However, there are multiple
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objects in a task. i.e., there can be multiple novel objects in a task that should
be considered for color, shape, and rotation-based measures. For the location-
based measure, we should consider all the pairwise relations available. When
defining the difficulty measure for a task (for each novelty dimension), we take
the minimum of the difficulty values. For example, if a task contains multiple
novel objects but only one object with a drastic difference in color compared to
the non-novel objects, this object will have a lower difficulty of detection using
color, therefore, we take the minimum difficulty as the task difficulty under the
color dimension. Formally we define the task difficulty for novelty-dimension nd
as Difficultynd = min(Difficultyndk ) for all novel objects/object pairs.

3.3 Action State

In this section, we present the formulation of difficulty measures for each di-
mension pertaining to the action state. An action within a given environment
represents a point in the action space, such as selecting the shooting angle in
Angry Birds. For each novelty dimension, we derive two difficulty measures: nov-
elty detection and novelty adaptation. To develop these difficulty measures, we
use the novel task template and the corresponding non-novel task template and
we compare the action change between them.

Action Target Action target based difficulty applies to environments that have
target objects to solve the tasks. This difficulty measure assesses if the target
object changes between the novel task and the non-novel task. For example, in
Fig. 1b, the non-novel task requires targeting the top ball, while the novel task
requires targeting the bottom ball to solve the task due to the change in air
turbulence. The adaptation difficulty in this task is high as an agent needs to
change the target object. However, as the target object changes, the detection
difficulty would be low as agents can detect that there is a novelty when the
previous target object fails to solve the task. Therefore, we define action target
difficulty using the GED. We define the action target graph for the non-novel
task as Gnon−novel and for the novel task as Gnovel. We represent the set of
nodes of Gx as Gnodes

x where x ∈ {non-novel, novel}. The edges indicate if any
of the connected nodes is a target of the other node. Therefore, the total possible
edits of Gx is T edits

x = |Gnodes
x | +

(|Gnodes
x |
2

)
. i.e., the total number of nodes and

the total number of edges of a fully connected graph (See Supplementary Fig.
3a). Thus, the adaptation difficulty measure is defined as the ratio of necessary
edits (to change Gnon_novel to Gnovel) to the total possible edits.

Difficultyaction target
adaptation =

GED(Gnon−novel, Gnovel)

max(T edits
non−novel, T

edits
novel)

(4)

Action Initiation The action initiation based difficulty evaluates if the action
that leads to the solution differs between the novel task and the non-novel task.
The underlying intuition is that if the novel task has solutions that an agent can
learn in the non-novel task, it is easy to adapt (lower adaptation difficulty) but
would be difficult to detect as the task gets solved by the same actions taken
in the non-novel task (higher detection difficulty). The solution to solve a task
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can be defined according to the domain. For example, in Angry Birds, it would
be defined as the shooting angle. We define Sx as the set of solutions for task x
where x ∈ {non-novel, novel} (Illustrated in Supplementary Fig.3b).

Difficultyaction initiation
adaptation =

|Snon−novel ∩ Snovel|
|Snovel|

(5)

Action Time The action time based difficulty looks at the time restrictions
imposed on the novel task. For example, if the novel task requires an agent
to take an action faster than that of the time allocated in the non-novel task,
the adaptation difficulty would be higher. In contrast, as the task cannot be
solved if an agent did not take the action, it would be easy for the agent to
detect. Therefore we look at the proportion of time allocated to the novel task
compared to the non-novel task when defining the action time based difficulty.
In this formulation, we assume that a novel task cannot be allocated more time
than a non-novel task. timex is the time allocated for the task x, where x ∈
{non-novel, novel} (Illustrated in Supplementary Fig.3c).

Difficultyaction time
adaptation =

timenon−novel − timenovel

timenon−novel
(6)

Action state difficulty summary The aforementioned difficulty measures,
based on the novelty dimensions for the action state are formulated to assess
novelty adaptation. As previously explained, the detection difficulty is the inverse
of the adaptation difficulty. For each novelty dimension nd ∈ {action target,
action initiation, action time}, we define the difficulty of novelty detection as:

Difficultynd
detection = 1−Difficultynd

adaptation (7)

4 Discussion and Conclusion

The novelties that appear in OWL environments may take various forms and the
difficulty to detect them and to adapt to them vary. While previous studies have
not explored the impact of different novelty dimensions on difficulty, it is a cru-
cial aspect to consider for conducting fair evaluations. Thus, our paper proposed
pragmatic methods to evaluate the difficulty of novelties by considering a range
of novelty dimensions and using a range of evaluation techniques inspired by sta-
tistical distance measures, learning techniques, and QSRs. In the supplementary
we show how the difficulty measures can be applied in practice to analyse agents.
Our difficulty formulations enable us to conduct a comprehensive evaluation by
disentangling the difficulty of novelty with the performance. Moreover, our diffi-
culty formulations can be embedded as a component to novelty generators [13,8]
to generate tasks with a predefined difficulty.

We aim to expand this study by incorporating additional novelty dimensions
such as dimensions to capture spatiotemporal changes. Moreover, we plan to con-
duct an evaluation of each novelty dimension by creating novelties that consider
variations within the novelty dimension (eg: novelties with a wide variation of
colors to validate the color dimension). We believe that our work has established
a solid groundwork for quantifying the difficulty involved in novelty detection
and novelty adaptation. We welcome OWL researchers to employ our difficulty
measures as a tool for gaining deeper insights into agent performance.
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